LEADER 01000caa a22002652 4500
001 NLM228165954
003 DE-627
005 20240114232611.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2013.05.004  |2 doi 
028 5 2 |a pubmed24n1253.xml 
035 |a (DE-627)NLM228165954 
035 |a (NLM)23747063 
035 |a (PII)S0176-1617(13)00214-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Msilini, Najoua  |e verfasserin  |4 aut 
245 1 0 |a How does iron deficiency disrupt the electron flow in photosystem I of lettuce leaves? 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2014 
500 |a Date Revised 09.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier GmbH. All rights reserved. 
520 |a The changes observed photosystem I activity of lettuce plants exposed to iron deficiency were investigated. Photooxidation/reduction kinetics of P700 monitored as ΔA820 in the presence and absence of electron transport inhibitors and acceptors demonstrated that deprivation in iron decreased the population of active photo-oxidizable P700. In the complete absence of iron, the addition of plant inhibitors (DCMU and MV) could not recover the full PSI activity owing to the abolition of a part of P700 centers. In leaves with total iron deprivation (0μM Fe), only 15% of photo-oxidizable P700 remained. In addition, iron deficiency appeared to affect the pool size of NADP(+) as shown by the decline in the magnitude of the first phase of the photooxidation kinetics of P700 by FR-light. Concomitantly, chlorophyll content gradually declined with the iron concentration added to culture medium. In addition, pronounced changes were found in chlorophyll fluorescence spectra. Also, the global fluorescence intensity was affected. The above changes led to an increased rate of cyclic electron transport around PSI mainly supported by stromal reductants 
650 4 |a Journal Article 
650 4 |a 3 (3,4-dichlorophenyl)-1,1-dimethylurea 
650 4 |a Absorbance changes 
650 4 |a Chl 
650 4 |a Cyclic electron flow 
650 4 |a Cyt 
650 4 |a DCMU 
650 4 |a EDTA 
650 4 |a FNR 
650 4 |a FQR 
650 4 |a FR 
650 4 |a Fe deficiency 
650 4 |a Fluorescence measurements 
650 4 |a LHCI and LHCII 
650 4 |a MV 
650 4 |a NAD(P)H dehydrogenase complex 
650 4 |a Ndh 
650 4 |a P700 
650 4 |a P700 oxidation/re-reduction kinetics 
650 4 |a PAM 
650 4 |a PSI and PSII 
650 4 |a RC 
650 4 |a Rubisco 
650 4 |a chlorophyll 
650 4 |a cytochrome 
650 4 |a ethylenediaminetetracetic acid 
650 4 |a far-red 
650 4 |a ferredoxin:NAD(P)H reductase 
650 4 |a ferredoxin:plastoquinone reductase 
650 4 |a light harvesting complexes I and II 
650 4 |a methyl viologen 
650 4 |a photosystems I and II 
650 4 |a pulse amplitude modulation 
650 4 |a reaction center 
650 4 |a reaction center of photosystem I 
650 4 |a ribulose-1,5-diphosphate carboxylase/oxygenase 
650 7 |a Photosystem I Protein Complex  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a chlorophyll P 700  |2 NLM 
650 7 |a 53321-11-2  |2 NLM 
650 7 |a Diuron  |2 NLM 
650 7 |a 9I3SDS92WY  |2 NLM 
650 7 |a Iron  |2 NLM 
650 7 |a E1UOL152H7  |2 NLM 
650 7 |a Paraquat  |2 NLM 
650 7 |a PLG39H7695  |2 NLM 
700 1 |a Essemine, Jemâa  |e verfasserin  |4 aut 
700 1 |a Zaghdoudi, Maha  |e verfasserin  |4 aut 
700 1 |a Harnois, Johanne  |e verfasserin  |4 aut 
700 1 |a Lachaâl, Mokhtar  |e verfasserin  |4 aut 
700 1 |a Ouerghi, Zeineb  |e verfasserin  |4 aut 
700 1 |a Carpentier, Robert  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 170(2013), 16 vom: 01. Nov., Seite 1400-6  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:170  |g year:2013  |g number:16  |g day:01  |g month:11  |g pages:1400-6 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2013.05.004  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 170  |j 2013  |e 16  |b 01  |c 11  |h 1400-6