|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM228142687 |
003 |
DE-627 |
005 |
20231224075240.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.12282
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0760.xml
|
035 |
|
|
|a (DE-627)NLM228142687
|
035 |
|
|
|a (NLM)23744698
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Pike, David A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Forecasting range expansion into ecological traps
|b climate-mediated shifts in sea turtle nesting beaches and human development
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.03.2014
|
500 |
|
|
|a Date Revised 04.09.2013
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2013 John Wiley & Sons Ltd.
|
520 |
|
|
|a Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Kemp's ridley turtle
|
650 |
|
4 |
|a Lepidochelys kempii
|
650 |
|
4 |
|a climate change
|
650 |
|
4 |
|a dispersal
|
650 |
|
4 |
|a human density
|
650 |
|
4 |
|a last glacial maximum
|
650 |
|
4 |
|a marine turtle
|
650 |
|
4 |
|a nesting habitat
|
650 |
|
4 |
|a population sink
|
650 |
|
4 |
|a range shift
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 19(2013), 10 vom: 15. Okt., Seite 3082-92
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:19
|g year:2013
|g number:10
|g day:15
|g month:10
|g pages:3082-92
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.12282
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 19
|j 2013
|e 10
|b 15
|c 10
|h 3082-92
|