Salient region detection improved by principle component analysis and boundary information

Salient region detection is useful for several image-processing applications, such as adaptive compression, object recognition, image retrieval, filter design, and image retargeting. A novel method to determine the salient regions of images is proposed in this paper. The L₀ smoothing filter and prin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 9 vom: 06. Sept., Seite 3614-24
1. Verfasser: Wu, Po-Hung (VerfasserIn)
Weitere Verfasser: Chen, Chien-Chi, Ding, Jian-Jiun, Hsu, Chi-Yu, Huang, Ying-Wun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM228142555
003 DE-627
005 20250215121407.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2266099  |2 doi 
028 5 2 |a pubmed25n0760.xml 
035 |a (DE-627)NLM228142555 
035 |a (NLM)23744683 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Po-Hung  |e verfasserin  |4 aut 
245 1 0 |a Salient region detection improved by principle component analysis and boundary information 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.03.2014 
500 |a Date Revised 20.09.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Salient region detection is useful for several image-processing applications, such as adaptive compression, object recognition, image retrieval, filter design, and image retargeting. A novel method to determine the salient regions of images is proposed in this paper. The L₀ smoothing filter and principle component analysis (PCA) play important roles in our framework. The L₀ filter is extremely helpful in characterizing fundamental image constituents, i.e., salient edges, and can simultaneously diminish insignificant details, thus producing more accurate boundary information for background merging and boundary scoring. PCA can reduce computational complexity as well as attenuate noise and translation errors. A local-global contrast is then used to calculate the distinction. Finally, image segmentation is used to achieve full-resolution saliency maps. The proposed method is compared with other state-of-the-art saliency detection methods and shown to yield higher precision-recall rates and F-measures 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chen, Chien-Chi  |e verfasserin  |4 aut 
700 1 |a Ding, Jian-Jiun  |e verfasserin  |4 aut 
700 1 |a Hsu, Chi-Yu  |e verfasserin  |4 aut 
700 1 |a Huang, Ying-Wun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 9 vom: 06. Sept., Seite 3614-24  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:9  |g day:06  |g month:09  |g pages:3614-24 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2266099  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 9  |b 06  |c 09  |h 3614-24