Abstract art by shape classification

This paper shows that classifying shapes is a tool useful in nonphotorealistic rendering (NPR) from photographs. Our classifier inputs regions from an image segmentation hierarchy and outputs the "best" fitting simple shape such as a circle, square, or triangle. Other approaches to NPR hav...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 19(2013), 8 vom: 16. Aug., Seite 1252-63
1. Verfasser: Song, Yi-Zhe (VerfasserIn)
Weitere Verfasser: Pickup, David, Li, Chuan, Rosin, Paul, Hall, Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM22813840X
003 DE-627
005 20231224075234.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2013.13  |2 doi 
028 5 2 |a pubmed24n0760.xml 
035 |a (DE-627)NLM22813840X 
035 |a (NLM)23744256 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
245 1 0 |a Abstract art by shape classification 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2014 
500 |a Date Revised 07.06.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper shows that classifying shapes is a tool useful in nonphotorealistic rendering (NPR) from photographs. Our classifier inputs regions from an image segmentation hierarchy and outputs the "best" fitting simple shape such as a circle, square, or triangle. Other approaches to NPR have recognized the benefits of segmentation, but none have classified the shape of segments. By doing so, we can create artwork of a more abstract nature, emulating the style of modern artists such as Matisse and other artists who favored shape simplification in their artwork. The classifier chooses the shape that "best" represents the region. Since the classifier is trained by a user, the "best shape" has a subjective quality that can over-ride measurements such as minimum error and more importantly captures user preferences. Once trained, the system is fully automatic, although simple user interaction is also possible to allow for differences in individual tastes. A gallery of results shows how this classifier contributes to NPR from images by producing abstract artwork 
650 4 |a Journal Article 
700 1 |a Pickup, David  |e verfasserin  |4 aut 
700 1 |a Li, Chuan  |e verfasserin  |4 aut 
700 1 |a Rosin, Paul  |e verfasserin  |4 aut 
700 1 |a Hall, Peter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 19(2013), 8 vom: 16. Aug., Seite 1252-63  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:19  |g year:2013  |g number:8  |g day:16  |g month:08  |g pages:1252-63 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2013.13  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2013  |e 8  |b 16  |c 08  |h 1252-63