Corner detection and classification using anisotropic directional derivative representations

This paper proposes a corner detector and classifier using anisotropic directional derivative (ANDD) representations. The ANDD representation at a pixel is a function of the oriented angle and characterizes the local directional grayscale variation around the pixel. The proposed corner detector fuse...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 8 vom: 21. Aug., Seite 3204-18
1. Verfasser: Shui, Peng-Lang (VerfasserIn)
Weitere Verfasser: Zhang, Wei-Chuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM228134196
003 DE-627
005 20231224075229.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2259834  |2 doi 
028 5 2 |a pubmed24n0760.xml 
035 |a (DE-627)NLM228134196 
035 |a (NLM)23743776 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shui, Peng-Lang  |e verfasserin  |4 aut 
245 1 0 |a Corner detection and classification using anisotropic directional derivative representations 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.01.2014 
500 |a Date Revised 07.06.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper proposes a corner detector and classifier using anisotropic directional derivative (ANDD) representations. The ANDD representation at a pixel is a function of the oriented angle and characterizes the local directional grayscale variation around the pixel. The proposed corner detector fuses the ideas of the contour- and intensity-based detection. It consists of three cascaded blocks. First, the edge map of an image is obtained by the Canny detector and from which contours are extracted and patched. Next, the ANDD representation at each pixel on contours is calculated and normalized by its maximal magnitude. The area surrounded by the normalized ANDD representation forms a new corner measure. Finally, the nonmaximum suppression and thresholding are operated on each contour to find corners in terms of the corner measure. Moreover, a corner classifier based on the peak number of the ANDD representation is given. Experiments are made to evaluate the proposed detector and classifier. The proposed detector is competitive with the two recent state-of-the-art corner detectors, the He & Yung detector and CPDA detector, in detection capability and attains higher repeatability under affine transforms. The proposed classifier can discriminate effectively simple corners, Y-type corners, and higher order corners 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhang, Wei-Chuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 8 vom: 21. Aug., Seite 3204-18  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:8  |g day:21  |g month:08  |g pages:3204-18 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2259834  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 8  |b 21  |c 08  |h 3204-18