Regularized feature reconstruction for spatio-temporal saliency detection

Multimedia applications such as image or video retrieval, copy detection, and so forth can benefit from saliency detection, which is essentially a method to identify areas in images and videos that capture the attention of the human visual system. In this paper, we propose a new spatio-temporal sali...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 8 vom: 21. Aug., Seite 3120-32
1. Verfasser: Ren, Zhixiang (VerfasserIn)
Weitere Verfasser: Gao, Shenghua, Chia, Liang-Tien, Rajan, Deepu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM228134161
003 DE-627
005 20250215121218.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2259837  |2 doi 
028 5 2 |a pubmed25n0760.xml 
035 |a (DE-627)NLM228134161 
035 |a (NLM)23743773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, Zhixiang  |e verfasserin  |4 aut 
245 1 0 |a Regularized feature reconstruction for spatio-temporal saliency detection 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.01.2014 
500 |a Date Revised 07.06.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Multimedia applications such as image or video retrieval, copy detection, and so forth can benefit from saliency detection, which is essentially a method to identify areas in images and videos that capture the attention of the human visual system. In this paper, we propose a new spatio-temporal saliency detection framework on the basis of regularized feature reconstruction. Specifically, for video saliency detection, both the temporal and spatial saliency detection are considered. For temporal saliency, we model the movement of the target patch as a reconstruction process using the patches in neighboring frames. A Laplacian smoothing term is introduced to model the coherent motion trajectories. With psychological findings that abrupt stimulus could cause a rapid and involuntary deployment of attention, our temporal model combines the reconstruction error, regularizer, and local trajectory contrast to measure the temporal saliency. For spatial saliency, a similar sparse reconstruction process is adopted to capture the regions with high center-surround contrast. Finally, the temporal saliency and spatial saliency are combined together to favor salient regions with high confidence for video saliency detection. We also apply the spatial saliency part of the spatio-temporal model to image saliency detection. Experimental results on a human fixation video dataset and an image saliency detection dataset show that our method achieves the best performance over several state-of-the-art approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Shenghua  |e verfasserin  |4 aut 
700 1 |a Chia, Liang-Tien  |e verfasserin  |4 aut 
700 1 |a Rajan, Deepu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 8 vom: 21. Aug., Seite 3120-32  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:8  |g day:21  |g month:08  |g pages:3120-32 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2259837  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 8  |b 21  |c 08  |h 3120-32