Interspecific vs intraspecific patterns in leaf nitrogen of forest trees across nitrogen availability gradients

© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 200(2013), 1 vom: 06. Okt., Seite 112-121
1. Verfasser: Dybzinski, Ray (VerfasserIn)
Weitere Verfasser: Farrior, Caroline E, Ollinger, Scott, Pacala, Stephen W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Evolutionarily Stable Strategy (ESS) Perfect Plasticity Approximation (PPA) White Mountains New Hampshire foliar nitrogen (N) forest diversity game theory light competition shade tolerance Soil mehr... Carbon 7440-44-0 Nitrogen N762921K75
Beschreibung
Zusammenfassung:© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Leaf nitrogen content (δ) coordinates with total canopy N and leaf area index (LAI) to maximize whole-crown carbon (C) gain, but the constraints and contributions of within-species plasticity to this phenomenon are poorly understood. Here, we introduce a game theoretic, physiologically based community model of height-structured competition between late-successional tree species. Species are constrained by an increasing, but saturating, relationship between photosynthesis and leaf N per unit leaf area. Higher saturating rates carry higher fixed costs. For a given whole-crown N content, a C gain-maximizing compromise exists between δ and LAI. With greater whole-crown N, both δ and LAI increase within species. However, a shift in community composition caused by reduced understory light at high soil N availability (which competitively favors species with low leaf costs and consequent low optimal δ) counteracts the within-species response, such that community-level δ changes little with soil N availability. These model predictions provide a new explanation for the changes in leaf N per mass observed in data from three dominant broadleaf species in temperate deciduous forests of New England. Attempts to understand large-scale patterns in vegetation often omit competitive interactions and intraspecific plasticity, but here both are essential to an understanding of ecosystem-level patterns
Beschreibung:Date Completed 15.04.2014
Date Revised 20.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12353