Soil nitrous oxide emissions following crop residue addition : a meta-analysis
© 2013 John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 19(2013), 10 vom: 30. Okt., Seite 2956-64 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article Meta-Analysis Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. C : N ratio arable soil crop residue meta-analysis nitrous oxide soil CO2 respiration mehr... |
Zusammenfassung: | © 2013 John Wiley & Sons Ltd. Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N(2)O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N(2)O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N(2)O emissions following residue amendment. Here, we used a meta-analysis to assess residue impacts on soil N(2)O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N(2)O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N(2)O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO(2) respiration. Furthermore, most significant and stimulatory effects occurred at 60-90% soil water-filled pore space and soil pH 7.1-7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water-filled pore space. Altogether, our meta-analysis suggests that crop residues played roles beyond N supply for N(2)O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N(2)O production. Our meta-analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N(2)O emissions |
---|---|
Beschreibung: | Date Completed 18.03.2014 Date Revised 16.11.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.12274 |