Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images

In this paper, a spatiocontextual unsupervised change detection technique for multitemporal, multispectral remote sensing images is proposed. The technique uses a Gibbs Markov random field (GMRF) to model the spatial regularity between the neighboring pixels of the multitemporal difference image. Th...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 8 vom: 07. Aug., Seite 3087-96
Auteur principal: Ghosh, Ashish (Auteur)
Autres auteurs: Subudhi, Badri Narayan, Bruzzone, Lorenzo
Format: Article en ligne
Langue:English
Publié: 2013
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM227864425
003 DE-627
005 20250215111332.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2259833  |2 doi 
028 5 2 |a pubmed25n0759.xml 
035 |a (DE-627)NLM227864425 
035 |a (NLM)23715521 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghosh, Ashish  |e verfasserin  |4 aut 
245 1 0 |a Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.01.2014 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, a spatiocontextual unsupervised change detection technique for multitemporal, multispectral remote sensing images is proposed. The technique uses a Gibbs Markov random field (GMRF) to model the spatial regularity between the neighboring pixels of the multitemporal difference image. The difference image is generated by change vector analysis applied to images acquired on the same geographical area at different times. The change detection problem is solved using the maximum a posteriori probability (MAP) estimation principle. The MAP estimator of the GMRF used to model the difference image is exponential in nature, thus a modified Hopfield type neural network (HTNN) is exploited for estimating the MAP. In the considered Hopfield type network, a single neuron is assigned to each pixel of the difference image and is assumed to be connected only to its neighbors. Initial values of the neurons are set by histogram thresholding. An expectation-maximization algorithm is used to estimate the GMRF model parameters. Experiments are carried out on three-multispectral and multitemporal remote sensing images. Results of the proposed change detection scheme are compared with those of the manual-trial-and-error technique, automatic change detection scheme based on GMRF model and iterated conditional mode algorithm, a context sensitive change detection scheme based on HTNN, the GMRF model, and a graph-cut algorithm. A comparison points out that the proposed method provides more accurate change detection maps than other methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Subudhi, Badri Narayan  |e verfasserin  |4 aut 
700 1 |a Bruzzone, Lorenzo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 8 vom: 07. Aug., Seite 3087-96  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:8  |g day:07  |g month:08  |g pages:3087-96 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2259833  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 8  |b 07  |c 08  |h 3087-96