Robust model for segmenting images with/without intensity inhomogeneities

Intensity inhomogeneities and different types/levels of image noise are the two major obstacles to accurate image segmentation by region-based level set models. To provide a more general solution to these challenges, we propose a novel segmentation model that considers global and local image statist...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 8 vom: 21. Aug., Seite 3296-309
1. Verfasser: Li, Changyang (VerfasserIn)
Weitere Verfasser: Wang, Xiuying, Eberl, Stefan, Fulham, Michael, Feng, David Dagan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM227681266
003 DE-627
005 20231224074235.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0759.xml 
035 |a (DE-627)NLM227681266 
035 |a (NLM)23693130 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Changyang  |e verfasserin  |4 aut 
245 1 0 |a Robust model for segmenting images with/without intensity inhomogeneities 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.01.2014 
500 |a Date Revised 15.07.2013 
500 |a published: Print 
500 |a ErratumIn: IEEE Trans Image Process. 2013 Sep;22(9):3729 
500 |a Citation Status MEDLINE 
520 |a Intensity inhomogeneities and different types/levels of image noise are the two major obstacles to accurate image segmentation by region-based level set models. To provide a more general solution to these challenges, we propose a novel segmentation model that considers global and local image statistics to eliminate the influence of image noise and to compensate for intensity inhomogeneities. In our model, the global energy derived from a Gaussian model estimates the intensity distribution of the target object and background; the local energy derived from the mutual influences of neighboring pixels can eliminate the impact of image noise and intensity inhomogeneities. The robustness of our method is validated on segmenting synthetic images with/without intensity inhomogeneities, and with different types/levels of noise, including Gaussian noise, speckle noise, and salt and pepper noise, as well as images from different medical imaging modalities. Quantitative experimental comparisons demonstrate that our method is more robust and more accurate in segmenting the images with intensity inhomogeneities than the local binary fitting technique and its more recent systematic model. Our technique also outperformed the region-based Chan–Vese model when dealing with images without intensity inhomogeneities and produce better segmentation results than the graph-based algorithms including graph-cuts and random walker when segmenting noisy images 
650 4 |a Journal Article 
700 1 |a Wang, Xiuying  |e verfasserin  |4 aut 
700 1 |a Eberl, Stefan  |e verfasserin  |4 aut 
700 1 |a Fulham, Michael  |e verfasserin  |4 aut 
700 1 |a Feng, David Dagan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 8 vom: 21. Aug., Seite 3296-309  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:8  |g day:21  |g month:08  |g pages:3296-309 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 8  |b 21  |c 08  |h 3296-309