Joint albedo estimation and pose tracking from video

The albedo of a Lambertian object is a surface property that contributes to an object's appearance under changing illumination. As a signature independent of illumination, the albedo is useful for object recognition. Single image-based albedo estimation algorithms suffer due to shadows and non-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 7 vom: 15. Juli, Seite 1674-89
1. Verfasser: Taheri, Sima (VerfasserIn)
Weitere Verfasser: Sankaranarayanan, Aswin C, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM227573226
003 DE-627
005 20231224074011.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.249  |2 doi 
028 5 2 |a pubmed24n0758.xml 
035 |a (DE-627)NLM227573226 
035 |a (NLM)23681995 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Taheri, Sima  |e verfasserin  |4 aut 
245 1 0 |a Joint albedo estimation and pose tracking from video 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.12.2013 
500 |a Date Revised 17.05.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The albedo of a Lambertian object is a surface property that contributes to an object's appearance under changing illumination. As a signature independent of illumination, the albedo is useful for object recognition. Single image-based albedo estimation algorithms suffer due to shadows and non-Lambertian effects of the image. In this paper, we propose a sequential algorithm to estimate the albedo from a sequence of images of a known 3D object in varying poses and illumination conditions. We first show that by knowing/estimating the pose of the object at each frame of a sequence, the object's albedo can be efficiently estimated using a Kalman filter. We then extend this for the case of unknown pose by simultaneously tracking the pose as well as updating the albedo through a Rao-Blackwellized particle filter (RBPF). More specifically, the albedo is marginalized from the posterior distribution and estimated analytically using the Kalman filter, while the pose parameters are estimated using importance sampling and by minimizing the projection error of the face onto its spherical harmonic subspace, which results in an illumination-insensitive pose tracking algorithm. Illustrations and experiments are provided to validate the effectiveness of the approach using various synthetic and real sequences followed by applications to unconstrained, video-based face recognition 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Sankaranarayanan, Aswin C  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 7 vom: 15. Juli, Seite 1674-89  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:7  |g day:15  |g month:07  |g pages:1674-89 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.249  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 7  |b 15  |c 07  |h 1674-89