Bimetallic Ag-Au nanowires : synthesis, growth mechanism, and catalytic properties

Silver-gold (Ag-Au) bimetallic nanowires were controllably synthesized by a newly developed wet-chemical method at room temperature. The Ag nanowires and Au nanoparticles were sequentially formed by reduction with vanadium oxide (V2O3) nanoparticles so as to form Ag-Au bimetal, in which the Ag nanow...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 23 vom: 11. Juni, Seite 7134-42
1. Verfasser: Fu, Haitao (VerfasserIn)
Weitere Verfasser: Yang, Xiaohong, Jiang, Xuchuan, Yu, Aibing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Silver-gold (Ag-Au) bimetallic nanowires were controllably synthesized by a newly developed wet-chemical method at room temperature. The Ag nanowires and Au nanoparticles were sequentially formed by reduction with vanadium oxide (V2O3) nanoparticles so as to form Ag-Au bimetal, in which the Ag nanowires show a diameter of ~20 nm and length up to 10 μm. A few unique features were noted in our new approach: it was rapid (within a few minutes), controllable in shape and size, reproducible, and there was no need for any surface modifiers. The formation and growth mechanisms of these Ag-Au bimetallic nanostructures driven by lattice match and a unique reducing agent (V2O3) have been proposed in this study. Moreover, the application of such bimetallic nanoparticles for catalytic reduction of 4-nitrophenol to 4-aminophenol was performed, and they exhibit catalytic properties superior to those of the Ag nanowires, Au nanoparticles, and Ag-Pd bimetallic nanostructures prepared under the reported conditions. These Ag-Au bimetallic nanoparticles have potential to be highly efficient catalysts for the reduction of 4-nitrophenol. This study may lead to new path for the generation of other bimetallic nanostructures with excellent catalytic efficiency
Beschreibung:Date Completed 10.01.2014
Date Revised 11.06.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la400753q