Plasticity in offspring contaminant tolerance traits : developmental cadmium exposure trumps parental effects

Parental effects are non-genotypic influences on offspring phenotype that occur via parental phenotypes or environments, while developmental plasticity is phenotypic variation that arises during development in response to environmental cues. We evaluated the relative contribution of these two source...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 22(2013), 5 vom: 18. Juli, Seite 847-53
1. Verfasser: Plautz, Stephanie C (VerfasserIn)
Weitere Verfasser: Salice, Christopher J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water Pollutants, Chemical Cadmium Chloride J6K4F9V3BA
Beschreibung
Zusammenfassung:Parental effects are non-genotypic influences on offspring phenotype that occur via parental phenotypes or environments, while developmental plasticity is phenotypic variation that arises during development in response to environmental cues. We evaluated the relative contribution of these two sources of phenotypic variation on offspring toxicant tolerance in Physa pomilia snails exposed to cadmium. We exposed adult snails to 0, 2, or 20 μg/L cadmium for 7 days, then exposed egg masses collected from these adults to 0 or 2 μg/L cadmium in a factorial design (adult cadmium exposure × egg mass cadmium exposure). Starting at 2 days old, we recorded time to death for hatchlings exposed to 150 μg/L cadmium for 72 h at 8 h intervals. Juveniles hatched from cadmium-exposed egg masses displayed higher cadmium tolerance than juveniles from unexposed egg masses. Among juveniles from egg masses not exposed to cadmium, offspring of parents exposed to 20 μg/L cadmium had higher cadmium tolerance than offspring of parents exposed to 0 or 2 μg/L cadmium. Our results show that both parental effects and developmental plasticity can impact offspring toxicant tolerance and point to the potential importance of both processes in understanding how offspring respond to chemical contaminants. When both parents and offspring are exposed to a toxicant, our results showed that the effects of parental exposure on offspring toxicant tolerance may be eclipsed by the effects of offspring exposure during development
Beschreibung:Date Completed 05.11.2013
Date Revised 21.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-013-1076-7