Visualizing natural image statistics

Natural image statistics is an important area of research in cognitive sciences and computer vision. Visualization of statistical results can help identify clusters and anomalies as well as analyze deviation, distribution, and correlation. Furthermore, they can provide visual abstractions and symbol...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 19(2013), 7 vom: 09. Juli, Seite 1228-41
1. Verfasser: Fang, Hui (VerfasserIn)
Weitere Verfasser: Tam, Gary Kwok-Leung, Borgo, Rita, Aubrey, Andrew J, Grant, Philip W, Rosin, Paul L, Wallraven, Christian, Cunningham, Douglas, Marshall, David, Chen, Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM227371194
003 DE-627
005 20231224073551.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2012.312  |2 doi 
028 5 2 |a pubmed24n0758.xml 
035 |a (DE-627)NLM227371194 
035 |a (NLM)23661013 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Hui  |e verfasserin  |4 aut 
245 1 0 |a Visualizing natural image statistics 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.01.2014 
500 |a Date Revised 10.05.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Natural image statistics is an important area of research in cognitive sciences and computer vision. Visualization of statistical results can help identify clusters and anomalies as well as analyze deviation, distribution, and correlation. Furthermore, they can provide visual abstractions and symbolism for categorized data. In this paper, we begin our study of visualization of image statistics by considering visual representations of power spectra, which are commonly used to visualize different categories of images. We show that they convey a limited amount of statistical information about image categories and their support for analytical tasks is ineffective. We then introduce several new visual representations, which convey different or more information about image statistics. We apply ANOVA to the image statistics to help select statistically more meaningful measurements in our design process. A task-based user evaluation was carried out to compare the new visual representations with the conventional power spectra plots. Based on the results of the evaluation, we made further improvement of visualizations by introducing composite visual representations of image statistics 
650 4 |a Journal Article 
700 1 |a Tam, Gary Kwok-Leung  |e verfasserin  |4 aut 
700 1 |a Borgo, Rita  |e verfasserin  |4 aut 
700 1 |a Aubrey, Andrew J  |e verfasserin  |4 aut 
700 1 |a Grant, Philip W  |e verfasserin  |4 aut 
700 1 |a Rosin, Paul L  |e verfasserin  |4 aut 
700 1 |a Wallraven, Christian  |e verfasserin  |4 aut 
700 1 |a Cunningham, Douglas  |e verfasserin  |4 aut 
700 1 |a Marshall, David  |e verfasserin  |4 aut 
700 1 |a Chen, Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 19(2013), 7 vom: 09. Juli, Seite 1228-41  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:19  |g year:2013  |g number:7  |g day:09  |g month:07  |g pages:1228-41 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2012.312  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2013  |e 7  |b 09  |c 07  |h 1228-41