Evaluation of leachate treatment by trickling filter and sequencing batch reactor processes in Ibadan, Nigeria

Strong and highly polluting leachate is continuously discharged into Omi stream and its tributaries in Ibadan, southwest Nigeria, from a municipal solid waste landfill. Previous studies have targeted physical and chemical treatment methods, which could not be implemented on site as stand-alone treat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 31(2013), 7 vom: 21. Juli, Seite 700-5
1. Verfasser: Aluko, Olufemi Oludare (VerfasserIn)
Weitere Verfasser: Sridhar, Mynepalli K C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Evaluation Study Journal Article Landfill leachates Nigeria aerobic treatment environmental pollution sequencing batch reactor trickling filter Water Pollutants, Chemical
Beschreibung
Zusammenfassung:Strong and highly polluting leachate is continuously discharged into Omi stream and its tributaries in Ibadan, southwest Nigeria, from a municipal solid waste landfill. Previous studies have targeted physical and chemical treatment methods, which could not be implemented on site as stand-alone treatment systems. This study explored the bench-scale, trickling filter (TF) and sequencing batch reactor (SBR) treatment processes and assessed the quality of effluents produced. Leachate treatment using TF produced effluents with significant reductions (%) in suspended solids (SS) (73.17%), turbidity (71.96%), biochemical oxygen demand (BOD5) (76.69%) and ammonia (NH3) (59.50%), while SBR produced effluents with reductions in SS (62.28%), BOD5 (84.06%) and NH3 (64.83%). The dissolved oxygen of the reactors was 4.7 and 6.1mg/l, respectively, in TF and SBR. Also, NH3 values reduced marginally; however, nitrification took place significantly, but within permissible limits. The effluents produced by biological treatment processes were better in quality though the mean residual concentrations for colour, SS and dissolved solids; BOD5 and iron were above the national regulatory standards for discharge into surface water bodies. SBR gave a better effluent quality and should be combined with other treatment methods in sequence to produce quality effluents
Beschreibung:Date Completed 09.01.2014
Date Revised 10.12.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X13485867