|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM226967085 |
003 |
DE-627 |
005 |
20231224072617.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201300657
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0756.xml
|
035 |
|
|
|a (DE-627)NLM226967085
|
035 |
|
|
|a (NLM)23616287
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lee, Tae Il
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.06.2015
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a A high-yield solution-processed ultrathin (<10 nm) trigonal tellurium (t-Te) nanowire (NW) is introduced as a new class of piezoelectric nanomaterial with a six-fold higher piezoelectric constant compared to conventional ZnO NWs for a high-volume power-density nanogenerator (NG). While determining the energy-harvesting principle in a NG consisting of t-Te NW, it is theoretically and experimentally found that t-Te NW is piezoelectrically activated only by creating strain in its radial direction, along which it has an asymmetric crystal structure. Based upon this mechanism, a NG with a monolayer consisting of well-aligned t-Te NWs and a power density of 9 mW/cm(3) is fabricated
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a monolayer assembly
|
650 |
|
4 |
|a nanogenerator
|
650 |
|
4 |
|a piezoelectricity
|
650 |
|
4 |
|a trigonal tellurium nanowire
|
650 |
|
7 |
|a Tellurium
|2 NLM
|
650 |
|
7 |
|a NQA0O090ZJ
|2 NLM
|
700 |
1 |
|
|a Lee, Sangmin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Eungkyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sohn, Sungwoo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Yean
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Sujeong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Moon, Geondae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Dohyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Youn Sang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Myoung, Jae Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhong Lin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 25(2013), 21 vom: 04. Juni, Seite 2920-5
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2013
|g number:21
|g day:04
|g month:06
|g pages:2920-5
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201300657
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2013
|e 21
|b 04
|c 06
|h 2920-5
|