Dynamics and structural changes of small water clusters on ionization

Copyright © 2013 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 34(2013), 18 vom: 05. Juli, Seite 1589-97
1. Verfasser: Lee, Han Myoung (VerfasserIn)
Weitere Verfasser: Kim, Kwang S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water 059QF0KO0R
Beschreibung
Zusammenfassung:Copyright © 2013 Wiley Periodicals, Inc.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)(n = 2-6)(+)] with density functional theory (DFT), Möller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O(+)) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high-level ab initio results. To understand the ionization process of water clusters, DFT- and MP2-based Born-Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen-like form with the hydronium cation instead of a Zundel-like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5(+) (5sL4A) cluster tends to form with a detached water molecule (H2O)
Beschreibung:Date Completed 19.09.2014
Date Revised 11.06.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.23296