Numerical conditioning problems and solutions for nonparametric i.i.d. statistical active contours

In this paper, we propose an active contour model based on nonparametric independent and identically distributed (i.i.d.) statistics of the image that can segment an image without any a priori information about the intensity distributions of the region of interest or the background. This is not, how...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 6 vom: 15. Juni, Seite 1298-311
1. Verfasser: Wu, Hao (VerfasserIn)
Weitere Verfasser: Appia, Vikram, Yezzi, Anthony
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM226801667
003 DE-627
005 20231224072235.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.207  |2 doi 
028 5 2 |a pubmed24n0756.xml 
035 |a (DE-627)NLM226801667 
035 |a (NLM)23599049 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Hao  |e verfasserin  |4 aut 
245 1 0 |a Numerical conditioning problems and solutions for nonparametric i.i.d. statistical active contours 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2013 
500 |a Date Revised 19.04.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose an active contour model based on nonparametric independent and identically distributed (i.i.d.) statistics of the image that can segment an image without any a priori information about the intensity distributions of the region of interest or the background. This is not, however, the first active contour model proposed to solve the segmentation problem under these same assumptions. In contrast to prior active contour models based on nonparametric i.i.d. statistics, we do not formulate our optimization criterion according to any distance measure between estimated probability densities inside and outside the active contour. Instead, treating the segmentation problem as a pixel-wise classification problem, we formulate an active contour to minimize the unbiased pixel-wise average misclassification probability (AMP). This not only simplifies the problem by avoiding the need to arbitrarily select among many sensible distance measures to measure the difference between the probability densities estimated inside and outside the active contour, but it also solves a numerical conditioning problem that arises with such prior active contour models. As a result, the AMP model exhibits faster convergence with higher accuracy and robustness when compared to active contour models previously formulated to solve the same nonparametric i.i.d. statistical segmentation problem via probability distances. To discuss this improved numerical behavior more precisely, we introduce the notion of "conditioning ratio" and demonstrate that the proposed AMP active contour is numerically better conditioned (i.e., exhibits a much smaller conditioning ratio) than prior probability distance-based active contours 
650 4 |a Journal Article 
700 1 |a Appia, Vikram  |e verfasserin  |4 aut 
700 1 |a Yezzi, Anthony  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 6 vom: 15. Juni, Seite 1298-311  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:6  |g day:15  |g month:06  |g pages:1298-311 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.207  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 6  |b 15  |c 06  |h 1298-311