Multivariate slow feature analysis and decorrelation filtering for blind source separation

We generalize the method of Slow Feature Analysis (SFA) for vector-valued functions of several variables and apply it to the problem of blind source separation, in particular to image separation. It is generally necessary to use multivariate SFA instead of univariate SFA for separating multi-dimensi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 7 vom: 01. Juli, Seite 2737-50
1. Verfasser: Minh, Ha Quang (VerfasserIn)
Weitere Verfasser: Wiskott, Laurenz
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM226729060
003 DE-627
005 20231224072054.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2257808  |2 doi 
028 5 2 |a pubmed24n0755.xml 
035 |a (DE-627)NLM226729060 
035 |a (NLM)23591489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Minh, Ha Quang  |e verfasserin  |4 aut 
245 1 0 |a Multivariate slow feature analysis and decorrelation filtering for blind source separation 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.12.2013 
500 |a Date Revised 20.05.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We generalize the method of Slow Feature Analysis (SFA) for vector-valued functions of several variables and apply it to the problem of blind source separation, in particular to image separation. It is generally necessary to use multivariate SFA instead of univariate SFA for separating multi-dimensional signals. For the linear case, an exact mathematical analysis is given, which shows in particular that the sources are perfectly separated by SFA if and only if they and their first-order derivatives are uncorrelated. When the sources are correlated, we apply the following technique called Decorrelation Filtering: use a linear filter to decorrelate the sources and their derivatives in the given mixture, then apply the unmixing matrix obtained on the filtered mixtures to the original mixtures. If the filtered sources are perfectly separated by this matrix, so are the original sources. A decorrelation filter can be numerically obtained by solving a nonlinear optimization problem. This technique can also be applied to other linear separation methods, whose output signals are decorrelated, such as ICA. When there are more mixtures than sources, one can determine the actual number of sources by using a regularized version of SFA with decorrelation filtering. Extensive numerical experiments using SFA and ICA with decorrelation filtering, supported by mathematical analysis, demonstrate the potential of our methods for solving problems involving blind source separation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wiskott, Laurenz  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 7 vom: 01. Juli, Seite 2737-50  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:7  |g day:01  |g month:07  |g pages:2737-50 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2257808  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 7  |b 01  |c 07  |h 2737-50