Vortex-induced amyloid superstructures of insulin and its component A and B chains

Insulin is an amyloid-forming polypeptide built of two disulfide-linked chains (A and B), both themselves amyloidogenic. An interesting property of insulin is that agitation strongly influences the course of its aggregation, resulting in characteristic chiral superstructures of amyloid fibrils. Here...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 29(2013), 17 vom: 30. Apr., Seite 5271-8
1. Verfasser: Babenko, Viktoria (VerfasserIn)
Weitere Verfasser: Piejko, Marcin, Wójcik, Sławomir, Mak, Paweł, Dzwolak, Wojciech
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amyloid Insulin Phosphines tris(2-carboxyethyl)phosphine H49AAM893K
Beschreibung
Zusammenfassung:Insulin is an amyloid-forming polypeptide built of two disulfide-linked chains (A and B), both themselves amyloidogenic. An interesting property of insulin is that agitation strongly influences the course of its aggregation, resulting in characteristic chiral superstructures of amyloid fibrils. Here, we investigate the self-assembly of these superstructures by comparing the quiescent and vortex-assisted aggregation of insulin and its individual A and B chains in the presence or absence of reducing agent tris(2-carboxyethyl)phosphine (TCEP). Our study shows that only the B chain in the presence of TCEP is converted into aggregates with morphology (according to atomic force microscopy) and optical activity (manifested as an extrinsic Cotton effect induced in bound thioflavin T) characteristic of amyloid superstructures that are normally formed by insulin in the absence of TCEP. In contrast to more rigid B-peptide fibrils, elongated aggregates of the A peptide become amorphous upon agitation. Moreover, the aggregation of equimolar mixture of both peptides does not produce highly ordered entities. Our results suggest that the dynamics of the B chain are the driving force for the assembly of superstructures, with the A chain being complicit as long as its own dynamics are controlled by the firm attachment to the B chain provided by the intact covalent structure of insulin
Beschreibung:Date Completed 11.11.2013
Date Revised 03.01.2025
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la400612w