Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces : benefits and limitations

We have employed in situ X-ray reflectivity (IXRR) to study the adsorption of a variety of proteins (lysozyme, cytochrome c, myoglobin, hemoglobin, serum albumin, and immunoglobulin G) on model hydrophilic (silicon oxide) and hydrophobic surfaces (octadecyltrichlorosilane self-assembled monolayers),...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 17 vom: 30. Apr., Seite 5167-80
1. Verfasser: Richter, Andrew G (VerfasserIn)
Weitere Verfasser: Kuzmenko, Ivan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Hemoglobins Immunoglobulin G Myoglobin Serum Albumin Silanes octadecyltrichlorosilane 112-04-9 mehr... Silicon Dioxide 7631-86-9 Cytochromes c 9007-43-6 Muramidase EC 3.2.1.17
LEADER 01000naa a22002652 4500
001 NLM226680584
003 DE-627
005 20231224071949.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1021/la3049532  |2 doi 
028 5 2 |a pubmed24n0755.xml 
035 |a (DE-627)NLM226680584 
035 |a (NLM)23586436 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Richter, Andrew G  |e verfasserin  |4 aut 
245 1 0 |a Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces  |b benefits and limitations 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.11.2013 
500 |a Date Revised 01.05.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We have employed in situ X-ray reflectivity (IXRR) to study the adsorption of a variety of proteins (lysozyme, cytochrome c, myoglobin, hemoglobin, serum albumin, and immunoglobulin G) on model hydrophilic (silicon oxide) and hydrophobic surfaces (octadecyltrichlorosilane self-assembled monolayers), evaluating this recently developed technique for its applicability in the area of biomolecular studies. We report herein the highest resolution depiction of adsorbed protein films, greatly improving on the precision of previous neutron reflectivity (NR) results and previous IXRR studies. We were able to perform complete scans in 5 min or less with the maximum momentum transfer of at least 0.52 Å(-1), allowing for some time-resolved information about the evolution of the protein film structure. The three smallest proteins (lysozyme, cytochrome c, and myoglobin) were seen to deposit as fully hydrated, nondenatured molecules onto hydrophilic surfaces, with indications of particular preferential orientations. Time evolution was observed for both lysozyme and myoglobin films. The larger proteins were not observed to deposit on the hydrophilic substrates, perhaps because of contrast limitations. On hydrophobic surfaces, all proteins were seen to denature extensively in a qualitatively similar way but with a rough trend that the larger proteins resulted in lower coverage. We have generated high-resolution electron density profiles of these denatured films, including capturing the growth of a lysozyme film. Because the solution interface of these denatured films is diffuse, IXRR cannot unambiguously determine the film extent and coverage, a drawback compared to NR. X-ray radiation damage was systematically evaluated, including the controlled exposure of protein films to high-intensity X-rays and exposure of the hydrophobic surface to X-rays before adsorption. Our analysis showed that standard measuring procedures used for XRR studies may lead to altered protein films; therefore, we used modified procedures to limit the influence of X-ray damage 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Hemoglobins  |2 NLM 
650 7 |a Immunoglobulin G  |2 NLM 
650 7 |a Myoglobin  |2 NLM 
650 7 |a Serum Albumin  |2 NLM 
650 7 |a Silanes  |2 NLM 
650 7 |a octadecyltrichlorosilane  |2 NLM 
650 7 |a 112-04-9  |2 NLM 
650 7 |a Silicon Dioxide  |2 NLM 
650 7 |a 7631-86-9  |2 NLM 
650 7 |a Cytochromes c  |2 NLM 
650 7 |a 9007-43-6  |2 NLM 
650 7 |a Muramidase  |2 NLM 
650 7 |a EC 3.2.1.17  |2 NLM 
700 1 |a Kuzmenko, Ivan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 29(2013), 17 vom: 30. Apr., Seite 5167-80  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:29  |g year:2013  |g number:17  |g day:30  |g month:04  |g pages:5167-80 
856 4 0 |u http://dx.doi.org/10.1021/la3049532  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 29  |j 2013  |e 17  |b 30  |c 04  |h 5167-80