|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM226617912 |
003 |
DE-627 |
005 |
20250215062926.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2013.069
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0755.xml
|
035 |
|
|
|a (DE-627)NLM226617912
|
035 |
|
|
|a (NLM)23579845
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bian, Z Y
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Electrocatalytic degradation kinetic of 4-chlorophenol by the Pd/C gas-diffusion electrode system
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 15.07.2013
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A Pd/C gas-diffusion cathode which generated H2O2 through a two-electron reduction process of fed oxygen molecule was used to degrade 4-chlorophenol in an undivided electrolysis device. The kinetics of 4-chlorophenol degradation has been investigated by the electrochemical oxidation processes. By inspecting the relationship between the rate constants (k) and influencing factors, using first-order kinetics to describe the electrochemical oxidation process of 4-chlorophenol, a kinetic model of 4-chlorophenol degradation process was proposed to calculate the 4-chlorophenol effluent concentration: C = C0 exp( -3:76 × 10(-6) C(-0.5)0 J(2) M(-0.7) Q(0.17) Dt). It was found that the electrocatalytic degradation rate of 4-chlorophenol was affected by current density, electrode distance, air-feeding rate, electrolyte concentration and initial 4-chlorophenol concentration. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of 4-chlorophenol effluent concentration and lead to better design of the electrochemical reactor
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Chlorophenols
|2 NLM
|
650 |
|
7 |
|a Electrolytes
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a 4-chlorophenol
|2 NLM
|
650 |
|
7 |
|a 3DLC36A01X
|2 NLM
|
650 |
|
7 |
|a Palladium
|2 NLM
|
650 |
|
7 |
|a 5TWQ1V240M
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Bian, Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pang, L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, A Z
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 67(2013), 8 vom: 17., Seite 1873-9
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:67
|g year:2013
|g number:8
|g day:17
|g pages:1873-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2013.069
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 67
|j 2013
|e 8
|b 17
|h 1873-9
|