Synthesis and self-assembly of amphiphilic homoglycopolypeptide

The synthesis of the amphiphilic homoglycopolypeptide was carried out by a combination of NCA polymerization and click chemistry to yield a well-defined polypeptide having an amphiphilic carbohydrate on its side chain. The amphiphilicity of the carbohydrate was achieved by incorporation of an alkyl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 19 vom: 14. Mai, Seite 5659-67
1. Verfasser: Dhaware, Vinita (VerfasserIn)
Weitere Verfasser: Shaikh, Ashif Y, Kar, Mrityunjoy, Hotha, Srinivas, Sen Gupta, Sayam
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Glycopeptides Polymers Surface-Active Agents
Beschreibung
Zusammenfassung:The synthesis of the amphiphilic homoglycopolypeptide was carried out by a combination of NCA polymerization and click chemistry to yield a well-defined polypeptide having an amphiphilic carbohydrate on its side chain. The amphiphilicity of the carbohydrate was achieved by incorporation of an alkyl chain at the C-6 position of the carbohydrate thus also rendering the homoglycopolypeptide amphiphilic. The homoglycopolypeptide formed multimicellar aggregates in water above a critical concentration of 0.9 μM due to phase separation. The multimicellar aggregates were characterized by DLS, TEM, and AFM. It is proposed that hydrophobic interactions of the aliphatic chains at the 6-position of the sugar moieties drives the assembly of these rod-like homoglycopolypeptide into large spherical aggregates. These multimicellar aggregates encapsulate both hydrophilic as well as hydrophobic dye as was confirmed by confocal microscopy. Finally, amphiphilic random polypeptides containing 10% and 20% α-d-mannose in addition to glucose containing a hydrophobic alkyl chain at its 6 position were synthesized by our methodology, and these polymers were also found to assemble into spherical nanostructures. The spherical assemblies of amphiphilic random glycopolypeptides containing 10% and 20% mannose were found to be surface bioactive and were found to interact with the lectin Con-A
Beschreibung:Date Completed 10.12.2013
Date Revised 14.05.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la400144t