Learning prototype hyperplanes for face verification in the wild

In this paper, we propose a new scheme called Prototype Hyperplane Learning (PHL) for face verification in the wild using only weakly labeled training samples (i.e., we only know whether each pair of samples are from the same class or different classes without knowing the class label of each sample)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 8 vom: 13. Aug., Seite 3310-6
1. Verfasser: Kan, Meina (VerfasserIn)
Weitere Verfasser: Xu, Dong, Shan, Shiguang, Li, Wen, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM226509184
003 DE-627
005 20231224071607.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0755.xml 
035 |a (DE-627)NLM226509184 
035 |a (NLM)23568506 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kan, Meina  |e verfasserin  |4 aut 
245 1 0 |a Learning prototype hyperplanes for face verification in the wild 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.01.2014 
500 |a Date Revised 15.07.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a new scheme called Prototype Hyperplane Learning (PHL) for face verification in the wild using only weakly labeled training samples (i.e., we only know whether each pair of samples are from the same class or different classes without knowing the class label of each sample) by leveraging a large number of unlabeled samples in a generic data set. Our scheme represents each sample in the weakly labeled data set as a mid-level feature with each entry as the corresponding decision value from the classification hyperplane (referred to as the prototype hyperplane) of one Support Vector Machine (SVM) model, in which a sparse set of support vectors is selected from the unlabeled generic data set based on the learnt combination coefficients. To learn the optimal prototype hyperplanes for the extraction of mid-level features, we propose a Fisher’s Linear Discriminant-like (FLD-like) objective function by maximizing the discriminability on the weakly labeled data set with a constraint enforcing sparsity on the combination coefficients of each SVM model, which is solved by using an alternating optimization method. Then, we use the recent work called Side-Information based Linear Discriminant (SILD) analysis for dimensionality reduction and a cosine similarity measure for final face verification. Comprehensive experiments on two data sets, Labeled Faces in the Wild (LFW) and YouTube Faces, demonstrate the effectiveness of our scheme 
650 4 |a Letter 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xu, Dong  |e verfasserin  |4 aut 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Li, Wen  |e verfasserin  |4 aut 
700 1 |a Chen, Xilin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 8 vom: 13. Aug., Seite 3310-6  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:8  |g day:13  |g month:08  |g pages:3310-6 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 8  |b 13  |c 08  |h 3310-6