Grassmannian regularized structured multi-view embedding for image classification

Images are usually represented by features from multiple views, e.g., color and texture. In image classification, the goal is to fuse all the multi-view features in a reasonable manner and achieve satisfactory classification performance. However, the features are often different in nature and it is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 7 vom: 01. Juli, Seite 2646-60
1. Verfasser: Wang, Xinchao (VerfasserIn)
Weitere Verfasser: Bian, Wei, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM226330583
003 DE-627
005 20231224071208.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2255300  |2 doi 
028 5 2 |a pubmed24n0754.xml 
035 |a (DE-627)NLM226330583 
035 |a (NLM)23549891 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xinchao  |e verfasserin  |4 aut 
245 1 0 |a Grassmannian regularized structured multi-view embedding for image classification 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.12.2013 
500 |a Date Revised 20.05.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Images are usually represented by features from multiple views, e.g., color and texture. In image classification, the goal is to fuse all the multi-view features in a reasonable manner and achieve satisfactory classification performance. However, the features are often different in nature and it is nontrivial to fuse them. Particularly, some extracted features are redundant or noisy and are consequently not discriminative for classification. To alleviate these problems in an image classification context, we propose in this paper a novel multi-view embedding framework, termed as Grassmannian regularized structured multi-view embedding, or GrassReg for short. GrassReg transfers the graph Laplacian obtained from each view to a point on the Grassmann manifold and penalizes the disagreement between different views according to Grassmannian distance. Therefore, a view that is consistent with others is more important than a view that disagrees with others for learning a unified subspace for multi-view data representation. In addition, we impose the group sparsity penalty onto the low-dimensional embeddings obtained hence they can better explore the group structure of the intrinsic data distribution. Empirically, we compare GrassReg with representative multi-view algorithms and show the effectiveness of GrassReg on a number of multi-view image data sets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bian, Wei  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 7 vom: 01. Juli, Seite 2646-60  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:7  |g day:01  |g month:07  |g pages:2646-60 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2255300  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 7  |b 01  |c 07  |h 2646-60