|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM22610883X |
003 |
DE-627 |
005 |
20231224070704.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/ert044
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0753.xml
|
035 |
|
|
|a (DE-627)NLM22610883X
|
035 |
|
|
|a (NLM)23526772
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Whalley, W R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Measurement of the matric potential of soil water in the rhizosphere
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.05.2014
|
500 |
|
|
|a Date Revised 16.11.2017
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The availability of soil water, and the ability of plants to extract it, are important variables in plant research. The matric potential has been a useful way to describe water status in a soil-plant system. In soil it is the potential that is derived from the surface tension of water menisci between soil particles. The magnitude of matric potential depends on the soil water content, the size of the soil pores, the surface properties of the soil particles, and the surface tension of the soil water. Of all the measures of soil water, matric potential is perhaps the most useful for plant scientists. In this review, the relationship between matric potential and soil water content is explored. It is shown that for any given soil type, this relationship is not unique and therefore both soil water content and matric potential need to be measured for the soil water status to be fully described. However, in comparison with water content, approaches for measuring matric potential have received less attention until recently. In this review, a critique of current methods to measure matric potential is presented, together with their limitations as well as underexploited opportunities. The relative merits of both direct and indirect methods to measure matric potential are discussed. The different approaches needed in wet and dry soil are outlined. In the final part of the paper, the emerging technologies are discussed in so far as our current imagination allows. The review draws upon current developments in the field of civil engineering where the measurement of matric potential is also important. The approaches made by civil engineers have been more imaginative than those of plant and soil scientists
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Matric potential
|
650 |
|
4 |
|a measurement
|
650 |
|
4 |
|a porous matrix sensors
|
650 |
|
4 |
|a sensors
|
650 |
|
4 |
|a tensiometer
|
650 |
|
4 |
|a water release characteristic.
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
700 |
1 |
|
|a Ober, E S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jenkins, M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 64(2013), 13 vom: 15. Okt., Seite 3951-63
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:64
|g year:2013
|g number:13
|g day:15
|g month:10
|g pages:3951-63
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/ert044
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 64
|j 2013
|e 13
|b 15
|c 10
|h 3951-63
|