Sparse cluster analysis of large-scale discrete variables with application to single nucleotide polymorphism data

Current extremely large scale genetic data presents significant challenges for cluster analysis. Most existing clustering methods are typically built on Euclidean distance and geared toward analyzing continuous response. They work well for clustering, e.g., microarray gene expression data, but often...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 40(2013), 2 vom: 01. Feb., Seite 358-367
1. Verfasser: Wu, Baolin (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Clustering Expectation-Maximization algorithm K-means Lasso Latent class model Principal components Single nucleotide polymorphism Sparse clustering