|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM226045730 |
003 |
DE-627 |
005 |
20250215042229.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2012.187
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0753.xml
|
035 |
|
|
|a (DE-627)NLM226045730
|
035 |
|
|
|a (NLM)23520262
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Morariu, Vlad I
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tracking people's hands and feet using mixed network AND/OR search
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.09.2013
|
500 |
|
|
|a Date Revised 22.03.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We describe a framework that leverages mixed probabilistic and deterministic networks and their AND/OR search space to efficiently find and track the hands and feet of multiple interacting humans in 2D from a single camera view. Our framework detects and tracks multiple people's heads, hands, and feet through partial or full occlusion; requires few constraints (does not require multiple views, high image resolution, knowledge of performed activities, or large training sets); and makes use of constraints and AND/OR Branch-and-Bound with lazy evaluation and carefully computed bounds to efficiently solve the complex network that results from the consideration of interperson occlusion. Our main contributions are: 1) a multiperson part-based formulation that emphasizes extremities and allows for the globally optimal solution to be obtained in each frame, and 2) an efficient and exact optimization scheme that relies on AND/OR Branch-and-Bound, lazy factor evaluation, and factor cost sensitive bound computation. We demonstrate our approach on three datasets: the public single person HumanEva dataset, outdoor sequences where multiple people interact in a group meeting scenario, and outdoor one-on-one basketball videos. The first dataset demonstrates that our framework achieves state-of-the-art performance in the single person setting, while the last two demonstrate robustness in the presence of partial and full occlusion and fast nontrivial motion
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Harwood, David
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Davis, Larry S
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 35(2013), 5 vom: 23. Mai, Seite 1248-62
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2013
|g number:5
|g day:23
|g month:05
|g pages:1248-62
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2012.187
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2013
|e 5
|b 23
|c 05
|h 1248-62
|