Tracking people's hands and feet using mixed network AND/OR search

We describe a framework that leverages mixed probabilistic and deterministic networks and their AND/OR search space to efficiently find and track the hands and feet of multiple interacting humans in 2D from a single camera view. Our framework detects and tracks multiple people's heads, hands, a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 5 vom: 23. Mai, Seite 1248-62
1. Verfasser: Morariu, Vlad I (VerfasserIn)
Weitere Verfasser: Harwood, David, Davis, Larry S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM226045730
003 DE-627
005 20250215042229.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.187  |2 doi 
028 5 2 |a pubmed25n0753.xml 
035 |a (DE-627)NLM226045730 
035 |a (NLM)23520262 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Morariu, Vlad I  |e verfasserin  |4 aut 
245 1 0 |a Tracking people's hands and feet using mixed network AND/OR search 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2013 
500 |a Date Revised 22.03.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We describe a framework that leverages mixed probabilistic and deterministic networks and their AND/OR search space to efficiently find and track the hands and feet of multiple interacting humans in 2D from a single camera view. Our framework detects and tracks multiple people's heads, hands, and feet through partial or full occlusion; requires few constraints (does not require multiple views, high image resolution, knowledge of performed activities, or large training sets); and makes use of constraints and AND/OR Branch-and-Bound with lazy evaluation and carefully computed bounds to efficiently solve the complex network that results from the consideration of interperson occlusion. Our main contributions are: 1) a multiperson part-based formulation that emphasizes extremities and allows for the globally optimal solution to be obtained in each frame, and 2) an efficient and exact optimization scheme that relies on AND/OR Branch-and-Bound, lazy factor evaluation, and factor cost sensitive bound computation. We demonstrate our approach on three datasets: the public single person HumanEva dataset, outdoor sequences where multiple people interact in a group meeting scenario, and outdoor one-on-one basketball videos. The first dataset demonstrates that our framework achieves state-of-the-art performance in the single person setting, while the last two demonstrate robustness in the presence of partial and full occlusion and fast nontrivial motion 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Harwood, David  |e verfasserin  |4 aut 
700 1 |a Davis, Larry S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 5 vom: 23. Mai, Seite 1248-62  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:5  |g day:23  |g month:05  |g pages:1248-62 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.187  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 5  |b 23  |c 05  |h 1248-62