Motion-aware gradient domain video composition
For images, gradient domain composition methods like Poisson blending offer practical solutions for uncertain object boundaries and differences in illumination conditions. However, adapting Poisson image blending to video presents new challenges due to the added temporal dimension. In video, the hum...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 7 vom: 11. Juli, Seite 2532-44 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | For images, gradient domain composition methods like Poisson blending offer practical solutions for uncertain object boundaries and differences in illumination conditions. However, adapting Poisson image blending to video presents new challenges due to the added temporal dimension. In video, the human eye is sensitive to small changes in blending boundaries across frames and slight differences in motions of the source patch and target video. We present a novel video blending approach that tackles these problems by merging the gradient of source and target videos and optimizing a consistent blending boundary based on a user-provided blending trimap for the source video. Our approach extends mean-value coordinates interpolation to support hybrid blending with a dynamic boundary while maintaining interactive performance. We also provide a user interface and source object positioning method that can efficiently deal with complex video sequences beyond the capabilities of alpha blending |
---|---|
Beschreibung: | Date Completed 30.12.2013 Date Revised 20.05.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2013.2251642 |