Mechanisms of vesicle spreading on surfaces : coarse-grained simulations

Exposition of unilamellar vesicles to attractive surfaces is a frequently used way to create supported lipid bilayers. Although this approach is known to produce continuous supported bilayer coatings, the mechanism of their formation and its dependence on factors like surface interaction and roughne...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 13 vom: 02. Apr., Seite 4335-49
1. Verfasser: Fuhrmans, Marc (VerfasserIn)
Weitere Verfasser: Müller, Marcus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lipid Bilayers
Beschreibung
Zusammenfassung:Exposition of unilamellar vesicles to attractive surfaces is a frequently used way to create supported lipid bilayers. Although this approach is known to produce continuous supported bilayer coatings, the mechanism of their formation and its dependence on factors like surface interaction and roughness or membrane tension as well as the interplay between neighboring vesicles or the involvement of preadsorbed bilayer patches are not well understood. Using dissipative particle dynamics simulations, we assess different mechanisms of vesicle spreading on attractive surfaces, placing special emphasis on the orientation of the resulting bilayer. Making use of the universality of collective phenomena in lipid membranes, we employed a solvent-free coarse-grained model, enabling us to cover the relatively large system sizes and time scales required. Our results indicate that one can control the mechanism of vesicle spreading by tuning the strength and range of the interactions with the substrate as well as the surface's roughness, resulting in a switch from a predominant inside-up to an outside-up orientation of the created supported bilayer
Beschreibung:Date Completed 26.09.2013
Date Revised 02.04.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la400119e