Nanoparticles adsorbed at the water/oil interface : coverage and composition effects on structure and diffusion

Dissipative particle dynamics simulations are performed to study the structural and dynamical properties of various systems of nanoparticles accumulated at the water/oil interface. Homogeneous and Janus nanoparticles with different surface compositions are studied. For all nanoparticles, as the surf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 24 vom: 18. Juni, Seite 7221-8
1. Verfasser: Luu, Xuan-Cuong (VerfasserIn)
Weitere Verfasser: Yu, Jing, Striolo, Alberto
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Oils Water 059QF0KO0R
Beschreibung
Zusammenfassung:Dissipative particle dynamics simulations are performed to study the structural and dynamical properties of various systems of nanoparticles accumulated at the water/oil interface. Homogeneous and Janus nanoparticles with different surface compositions are studied. For all nanoparticles, as the surface density increases, a transition from a liquidlike to a solidlike state is observed, as expected. At a high density of nanoparticles, hexagonal structures emerge and the nanoparticles' self-diffusion coefficient decreases because of caging effects. Similar results are observed for nanoparticles with different surface chemistry. Because different nanoparticles have different contact angles at the water/oil interface, the results obtained for systems containing mixed nanoparticles are more interesting. For example, our results show that the self-diffusion coefficient is not a monotonic function of the system composition, caused by the complex relation between hydrodynamic interactions and effective nanoparticle-nanoparticle interactions
Beschreibung:Date Completed 06.01.2014
Date Revised 18.06.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la304828u