Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM

Lattice mismatch in a bimetallic core-shell nanoparticle will cause strain in the epitaxial shell layer, and if it reaches the critical layer thickness misfit dislocations will appear in order to release the increasing strain. These defects are relevant since they will directly impact the atomic and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Surface science. - 1997. - 609(2013) vom: 01. März, Seite 161-166
1. Verfasser: Bhattarai, Nabraj (VerfasserIn)
Weitere Verfasser: Casillas, Gilberto, Ponce, Arturo, Jose-Yacaman, Miguel
Format: Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Surface science
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM225483726
003 DE-627
005 20250215021920.0
007 tu
008 231224s2013 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0751.xml 
035 |a (DE-627)NLM225483726 
035 |a (NLM)23457419 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bhattarai, Nabraj  |e verfasserin  |4 aut 
245 1 0 |a Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Lattice mismatch in a bimetallic core-shell nanoparticle will cause strain in the epitaxial shell layer, and if it reaches the critical layer thickness misfit dislocations will appear in order to release the increasing strain. These defects are relevant since they will directly impact the atomic and electronic structures thereby changing the physical and chemical properties of the nanoparticles. Here we report the direct observation and evolution through aberration-corrected scanning transmission electron microscopy of dislocations in AuPd core-shell nanoparticles. Our results show that first Shockley partial dislocations (SPD) combined with stacking faults (SF) appear at the last Pd layer; then, as the shell grows the SPDs and SFs appear at the interface and combine with misfit dislocations, which finally diffuse to the free surfaces due to the alloying of Au into the Pd shell. The critical layer thickness was found to be at least 50% greater than in thin films, confirming that shells growth on nanoparticles can sustain more strain due to the tridimensional nature of the nanoparticles 
650 4 |a Journal Article 
700 1 |a Casillas, Gilberto  |e verfasserin  |4 aut 
700 1 |a Ponce, Arturo  |e verfasserin  |4 aut 
700 1 |a Jose-Yacaman, Miguel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Surface science  |d 1997  |g 609(2013) vom: 01. März, Seite 161-166  |w (DE-627)NLM098126490  |x 0039-6028  |7 nnns 
773 1 8 |g volume:609  |g year:2013  |g day:01  |g month:03  |g pages:161-166 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 609  |j 2013  |b 01  |c 03  |h 161-166