Analyses of the temperature field of traveling-wave rotary ultrasonic motors

In this paper, the transient and steady-state temperature field of a traveling-wave rotary ultrasonic motor is analyzed by the finite element method, based on a theoretical model of power loss of this motor in rated operation. Using this model, the temperature field of this motor is calculated and t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 58(2011), 12 vom: 26. Dez., Seite 2708-19
1. Verfasser: Lu, Xiaolong (VerfasserIn)
Weitere Verfasser: Hu, Junhui, Zhao, Chunsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM22535313X
003 DE-627
005 20231224064950.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2011.2133  |2 doi 
028 5 2 |a pubmed24n0751.xml 
035 |a (DE-627)NLM22535313X 
035 |a (NLM)23443706 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Xiaolong  |e verfasserin  |4 aut 
245 1 0 |a Analyses of the temperature field of traveling-wave rotary ultrasonic motors 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.07.2013 
500 |a Date Revised 27.02.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, the transient and steady-state temperature field of a traveling-wave rotary ultrasonic motor is analyzed by the finite element method, based on a theoretical model of power loss of this motor in rated operation. Using this model, the temperature field of this motor is calculated and the effects of the heat conductivity of friction material, motor size, ambient temperature, and pressure on the temperature field are estimated. The calculated temperature distribution and transient temperature change agree with the experimental results. The variation of heat conductivity of the friction material has little effect on the minimum temperature in the motor but this variation seriously affects the maximum temperature in the motor when the heat conductivity of the friction material is lower than 0.5 W/(m°C). Two indices are defined to express the non-uniformity of temperature field and how quickly the temperature field reaches its steady state for traveling-wave ultrasonic motors of different sizes. It is found that traveling-wave ultrasonic motors with different sizes have different nonuniformity of temperature field and take different amounts of time to reach thermal steady state. The maximum temperature rise is lower when the ambient temperature is higher; the maximum temperature increases as the vacuum degree increases and it is not affected by the vacuum degree when the vacuum degree is too high (<10(-3) Pa) 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hu, Junhui  |e verfasserin  |4 aut 
700 1 |a Zhao, Chunsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 58(2011), 12 vom: 26. Dez., Seite 2708-19  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:58  |g year:2011  |g number:12  |g day:26  |g month:12  |g pages:2708-19 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2011.2133  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 58  |j 2011  |e 12  |b 26  |c 12  |h 2708-19