3D stochastic completion fields for mapping connectivity in diffusion MRI

The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of like...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 4 vom: 18. Apr., Seite 983-95
1. Verfasser: MomayyezSiahkal, Parya (VerfasserIn)
Weitere Verfasser: Siddiqi, Kaleem
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM225206277
003 DE-627
005 20231224064625.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.184  |2 doi 
028 5 2 |a pubmed24n0750.xml 
035 |a (DE-627)NLM225206277 
035 |a (NLM)23428434 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a MomayyezSiahkal, Parya  |e verfasserin  |4 aut 
245 1 0 |a 3D stochastic completion fields for mapping connectivity in diffusion MRI 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.11.2013 
500 |a Date Revised 22.02.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Siddiqi, Kaleem  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 4 vom: 18. Apr., Seite 983-95  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:4  |g day:18  |g month:04  |g pages:983-95 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.184  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 4  |b 18  |c 04  |h 983-95