Facilitating mismatch discrimination by surface-affixed PNA probes via ionic regulation

There has been a search for alternative nucleic acids that can be more effectively used in nucleic acid detection technologies compared to the DNA probes. Peptide nucleic acid (PNA), which contains a non-ionic peptidic backbone, offers such possibilities since it is nuclease-resistant, it binds to D...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 29(2013), 10 vom: 12. März, Seite 3370-9
1. Verfasser: Ghosh, Srabani (VerfasserIn)
Weitere Verfasser: Mishra, Sourav, Banerjee, Trambaki, Mukhopadhyay, Rupa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DNA Probes Peptide Nucleic Acids DNA 9007-49-2
Beschreibung
Zusammenfassung:There has been a search for alternative nucleic acids that can be more effectively used in nucleic acid detection technologies compared to the DNA probes. Peptide nucleic acid (PNA), which contains a non-ionic peptidic backbone, offers such possibilities since it is nuclease-resistant, it binds to DNA with high affinity, and it can be readily self-assembled onto solid substrates, e.g., gold(111), with a molecular backbone orientation away from the substrate. Although application of PNA as a sensor probe has been exemplified, so far there is little or no account of the ionic modulation of single base mismatch discrimination capacity of surface-tethered PNA probes. Herein, we report "on-surface" melting temperatures of PNA-DNA duplexes formed on gold(111) surface, as obtained from fluorescence measurements. We show that surface-tethered PNA forms a stabler duplex than DNA, and is more effective in single base mismatch discrimination than DNA. Importantly, although PNA backbone is non-ionic, variation in the ionic components in hybridization buffer, i.e., varying concentration of monovalent sodium ion, and the nature of anion and the cation, exhibits clear effects on the mismatch discrimination capacity of PNA probes. In general, with decreasing cation concentration, PNA-DNA duplexes are stabilized and mismatch discrimination capacity of the PNA probes is enhanced. The stabilizing/destabilizing effects of anions are found to follow the Hofmeister series, emphasizing the importance of hydrophobic interaction between nucleobases for stability of the PNA-DNA duplexes. Interestingly, the nature of ionic dependence of "on-surface" mismatch detection ability of PNA probes differs significantly from the "solution" behavior of these probes
Beschreibung:Date Completed 04.09.2013
Date Revised 12.03.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la400125x