Coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels

In this paper, we develop a decomposition model to restore blurred images with missing pixels. Our assumption is that the underlying image is the superposition of cartoon and texture components. We use the total variation norm and its dual norm to regularize the cartoon and texture, respectively. We...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 6 vom: 21. Juni, Seite 2233-46
1. Verfasser: Ng, Michael K (VerfasserIn)
Weitere Verfasser: Yuan, Xiaoming, Zhang, Wenxing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we develop a decomposition model to restore blurred images with missing pixels. Our assumption is that the underlying image is the superposition of cartoon and texture components. We use the total variation norm and its dual norm to regularize the cartoon and texture, respectively. We recommend an efficient numerical algorithm based on the splitting versions of augmented Lagrangian method to solve the problem. Theoretically, the existence of a minimizer to the energy function and the convergence of the algorithm are guaranteed. In contrast to recently developed methods for deblurring images, the proposed algorithm not only gives the restored image, but also gives a decomposition of cartoon and texture parts. These two parts can be further used in segmentation and inpainting problems. Numerical comparisons between this algorithm and some state-of-the-art methods are also reported
Beschreibung:Date Completed 30.12.2013
Date Revised 03.04.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2013.2246520