Response of removal rates to various organic carbon and ammonium loads in laboratory-scale constructed wetlands treating artificial wastewater

High levels (92 and 91%) of organic carbon were successfully removed from artificial wastewater by a laboratory-scale constructed wetland under inflow loads of 670 mg/m2 x d (100 mg/d) and 1600 mg/m2d (240 mg/d), respectively. Acidification to pH 3.0 was observed at the low organic carbon load, whic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 85(2013), 1 vom: 04. Jan., Seite 44-53
1. Verfasser: Wu, Shubiao (VerfasserIn)
Weitere Verfasser: Kuschk, Peter, Wiessner, Arndt, Kästner, Matthias, Pang, Changle, Dong, Renjie
Format: Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Organic Chemicals Quaternary Ammonium Compounds Waste Water Carbon 7440-44-0
Beschreibung
Zusammenfassung:High levels (92 and 91%) of organic carbon were successfully removed from artificial wastewater by a laboratory-scale constructed wetland under inflow loads of 670 mg/m2 x d (100 mg/d) and 1600 mg/m2d (240 mg/d), respectively. Acidification to pH 3.0 was observed at the low organic carbon load, which further inhibited the denitrification process. An increase in carbon load, however, was associated with a significant elevation of pH to 6.0. In general, sulfate and nitrate reduction were relatively high, with mean levels of 87 and 90%, respectively. However, inhibition of nitrification was initiated with an increase in carbon loads. This effect was probably a result of competition for oxygen by heterotrophic bacteria and an inhibitory effect of sulfide (S2) toxicity (concentration approximately 3 mg/L). In addition, numbers of healthy stalks of Juncus effusus (common rush) decreased from 14 000 to 10 000/m2 with an increase of sulfide concentration, indicating the negative effect of sulfide toxicity on the wetland plants
Beschreibung:Date Completed 04.03.2013
Date Revised 07.12.2022
published: Print
Citation Status MEDLINE
ISSN:1554-7531