Probing heterogeneity of cortical bone with ultrasound axial transmission
In clinical examination of long cortical bones based on ultrasound axial transmission, the parameter currently used as indicator of bone fragility is the velocity of the first arriving signal (VFAS). VFAS is inherently related to the material properties of the bone site. However, experimental uncert...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 60(2013), 1 vom: 01. Jan., Seite 187-93 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article |
Zusammenfassung: | In clinical examination of long cortical bones based on ultrasound axial transmission, the parameter currently used as indicator of bone fragility is the velocity of the first arriving signal (VFAS). VFAS is inherently related to the material properties of the bone site. However, experimental uncertainties may hide the true sensitivity of VFAS to elastic characteristics of bone. Measurements are performed with a multi-element compact array placed in contact with the bone. Therefore, VFAS measurements may be biased by variability imposed by geometrical irregularities of the sample below the probe and/or by probe misalignment. In this paper, we test the assumption that despite experimental errors, VFAS variations resulting from material properties can be measured. The methodology was to compare VFAS and velocities of compression bulk waves (VBWs) on carefully matched sites around the circumference of a test sample (bovine femur). VBW was mapped on bone cross-sections using a through-transmission technique. VBW and VFAS were highly correlated [R² = 0.80, root mean square error = 23 m·s⁻¹, p < 10⁻⁵] and the slope of the linear regression was close to 1 except in a part of the circumference with a pronounced curvature. In measurements performed with the same protocol as for clinical measurements, regions with different material properties (reflected by VBW) could be identified. This work demonstrates that within-specimen variations of material properties can be assessed with a technique available for in vivo measurements |
---|---|
Beschreibung: | Date Completed 10.06.2013 Date Revised 18.09.2019 published: Print Citation Status MEDLINE |
ISSN: | 1525-8955 |