|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM224981358 |
003 |
DE-627 |
005 |
20231224064125.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/ert025
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0750.xml
|
035 |
|
|
|a (DE-627)NLM224981358
|
035 |
|
|
|a (NLM)23404902
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Krizek, Beth A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Control of flower size
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.09.2013
|
500 |
|
|
|a Date Revised 08.04.2013
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Flowers exhibit amazing morphological diversity in many traits, including their size. In addition to interspecific flower size differences, many species maintain significant variation in flower size within and among populations. Flower size variation can contribute to reproductive isolation of species and thus has clear evolutionary consequences. In this review we integrate information on flower size variation from both evolutionary and developmental biology perspectives. We examine the role of flower size in the context of mating system evolution. In addition, we describe what is currently known about the genetic basis of flower size based on quantitative trait locus (QTL) mapping in several different plant species and molecular genetic studies in model plants, primarily Arabidopsis thaliana. Work in Arabidopsis suggests that many independent pathways regulate floral organ growth via effects on cell proliferation and/or cell expansion
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Review
|
650 |
|
7 |
|a Arabidopsis Proteins
|2 NLM
|
650 |
|
7 |
|a DNA-Binding Proteins
|2 NLM
|
650 |
|
7 |
|a auxin response factor 8, Arabidopsis
|2 NLM
|
700 |
1 |
|
|a Anderson, Jill T
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 64(2013), 6 vom: 11. Apr., Seite 1427-37
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:64
|g year:2013
|g number:6
|g day:11
|g month:04
|g pages:1427-37
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/ert025
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 64
|j 2013
|e 6
|b 11
|c 04
|h 1427-37
|