GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation

Gibberellic acid (GA) can regulate many plant developmental processes. GAST1 has been identified as a GA-stimulated transcript, and Arabidopsis GAST-like genes are known to constitute the GASA family. However, the functions of most GASA genes are not clear at present. In this study, the function of...

Description complète

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 64(2013), 6 vom: 01. Apr., Seite 1637-47
Auteur principal: Sun, Shulan (Auteur)
Autres auteurs: Wang, Haoxiang, Yu, Hongmei, Zhong, Chunmei, Zhang, Xiaoxia, Peng, Jianzong, Wang, Xiaojing
Format: Article en ligne
Langue:English
Publié: 2013
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Arabidopsis Proteins Gibberellins Reactive Oxygen Species Triazoles GASA protein, Arabidopsis 167679-73-4 Sodium Chloride 451W47IQ8X plus... paclobutrazol 6PLV42R3ZA Abscisic Acid 72S9A8J5GW Hydrogen Peroxide BBX060AN9V gibberellic acid BU0A7MWB6L
LEADER 01000caa a22002652 4500
001 NLM224728032
003 DE-627
005 20250214231614.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/ert021  |2 doi 
028 5 2 |a pubmed25n0749.xml 
035 |a (DE-627)NLM224728032 
035 |a (NLM)23378382 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Shulan  |e verfasserin  |4 aut 
245 1 0 |a GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.09.2013 
500 |a Date Revised 19.11.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Gibberellic acid (GA) can regulate many plant developmental processes. GAST1 has been identified as a GA-stimulated transcript, and Arabidopsis GAST-like genes are known to constitute the GASA family. However, the functions of most GASA genes are not clear at present. In this study, the function of GASA14, a member of the GASA family, was investigated. GASA14 expression was upregulated by GA and downregulated by the transcriptional regulators that repress GA responses, the DELLA proteins GAI and RGA. Phenotypic analysis showed that growth of the GASA14 null mutant (gasa14-1) line was retarded, and the growth of the 35S::GASA14 lines were promoted in young plants. Furthermore, seed germination of the gasa14-1 plants showed more sensitivity to paclobutrazol (an inhibitor of GA biosynthesis) than Columbia (Col) plants, suggesting that GASA14 is required for GA-dependent responses. Analysis of the responses of the gasa14-1 and 35S::GASA14 lines to abscisic acid (ABA) and salt revealed that germination and seedling establishment of gasa14-1 were poorer than those of Col plants and that the 35S::GASA14 lines were more resistant to ABA and salt. Further analysis showed that overexpression of GASA14 could suppress reactive oxygen species (ROS) accumulation. Taken together, these results demonstrated that GASA14 regulates leaf expansion and abiotic stress resistance by modulating ROS accumulation. Because GASA14 contains both GASA (GA-stimulated in Arabidopsis) and PRP (proline-rich protein) domains, the PRP domain coding sequence was overexpressed in Col plants and it was found that the growth of the transgenic plants and the responses to ABA and salt were not altered. These results thus suggest that the GASA domain is necessary for the functions of GASA14 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Arabidopsis Proteins  |2 NLM 
650 7 |a Gibberellins  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Triazoles  |2 NLM 
650 7 |a GASA protein, Arabidopsis  |2 NLM 
650 7 |a 167679-73-4  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a paclobutrazol  |2 NLM 
650 7 |a 6PLV42R3ZA  |2 NLM 
650 7 |a Abscisic Acid  |2 NLM 
650 7 |a 72S9A8J5GW  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a gibberellic acid  |2 NLM 
650 7 |a BU0A7MWB6L  |2 NLM 
700 1 |a Wang, Haoxiang  |e verfasserin  |4 aut 
700 1 |a Yu, Hongmei  |e verfasserin  |4 aut 
700 1 |a Zhong, Chunmei  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaoxia  |e verfasserin  |4 aut 
700 1 |a Peng, Jianzong  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaojing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 64(2013), 6 vom: 01. Apr., Seite 1637-47  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:64  |g year:2013  |g number:6  |g day:01  |g month:04  |g pages:1637-47 
856 4 0 |u http://dx.doi.org/10.1093/jxb/ert021  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 64  |j 2013  |e 6  |b 01  |c 04  |h 1637-47