On the effect of monomer chemistry on growth mechanisms of nonfouling PEG-like plasma polymers

It has been shown that both ions and neutral species may contribute to plasma polymer growth. However, the relative contribution from these mechanisms remains unclear. We present data elucidating the importance of considering monomer structure with respect to which the growth mechanism dominates for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 8 vom: 26. Feb., Seite 2595-601
1. Verfasser: Michelmore, Andrew (VerfasserIn)
Weitere Verfasser: Gross-Kosche, Petra, Al-Bataineh, Sameer A, Whittle, Jason D, Short, Robert D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Polymers
Beschreibung
Zusammenfassung:It has been shown that both ions and neutral species may contribute to plasma polymer growth. However, the relative contribution from these mechanisms remains unclear. We present data elucidating the importance of considering monomer structure with respect to which the growth mechanism dominates for nonfouling PEG-like plasma polymers. The deposition rate for saturated monomers is directly linked with ion flux to the substrate. For unsaturated monomers, the neutral flux also plays a role, particularly at low power. Increased fragmentation of the monomer at high power reduces the ability of unsaturated monomers to grow via neutral grafting. Chemical characterization by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirm the role that plasma phase fragmentation plays in determining the deposition rate and surface chemistry of the deposited film. The simple experimental method used here may also be used to determine which mechanisms dominate plasma deposition for other monomers. This knowledge may enable significant improvement in future reactor design and process control
Beschreibung:Date Completed 13.08.2013
Date Revised 26.02.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la304713b