High-throughput directed self-assembly of core-shell ferrimagnetic nanoparticle arrays

Magnetic nanoparticles (MNPs) provide a set of building blocks for constructing stimuli-responsive nanoscale materials with properties that are unique to this scale. The size and the composition of MNPs are tunable to meet the requirements for a range of applications including biosensors and data st...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 24 vom: 18. Juni, Seite 7472-7
1. Verfasser: Dai, Qiu (VerfasserIn)
Weitere Verfasser: Frommer, Jane, Berman, David, Virwani, Kumar, Davis, Blake, Cheng, Joy Y, Nelson, Alshakim
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Magnetic nanoparticles (MNPs) provide a set of building blocks for constructing stimuli-responsive nanoscale materials with properties that are unique to this scale. The size and the composition of MNPs are tunable to meet the requirements for a range of applications including biosensors and data storage. Although many of these technologies would significantly benefit from the organization of nanoparticles into higher-order architectures, the precise placement and arrangement of nanoparticles over large areas of a surface remain a challenge. Herein, we demonstrate the viability of magnetic nanoparticles for patterned recording media utilizing a template-directed self-assembly process to afford well-defined nanostructures of magnetic nanoparticles and access these assemblies using magnetic force microscopy and a magnetic recording head. Photolithographically defined holes were utilized as templates to form assemblies of ferrimagnetic nanoparticle rings or pillars selectively over a large area (>1 cm(2)) in just 30 s. This approach is applicable to other nanoparticle systems as well and enables their high-throughput self-assembly for future advanced device fabrication
Beschreibung:Date Completed 06.01.2014
Date Revised 18.06.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la304573p