Hormesis phenomena under Cd stress in a hyperaccumulator--Lonicera japonica Thunb
A hydroponic experiment was carried out to investigate possible hormetic response induced by cadmium (Cd) in a potential hyperaccumulator-Lonicera japonica Thunb. The results showed that Cd at low concentrations induced a significant increase in plant growth, leaf water content and content of photos...
Veröffentlicht in: | Ecotoxicology (London, England). - 1992. - 22(2013), 3 vom: 22. Apr., Seite 476-85 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Ecotoxicology (London, England) |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Antioxidants Electrolytes Environmental Pollutants Cadmium 00BH33GNGH Chlorophyll 1406-65-1 Carotenoids |
Zusammenfassung: | A hydroponic experiment was carried out to investigate possible hormetic response induced by cadmium (Cd) in a potential hyperaccumulator-Lonicera japonica Thunb. The results showed that Cd at low concentrations induced a significant increase in plant growth, leaf water content and content of photosynthetic pigments in L. japonica, but decreased them at high concentrations, displayed inverted U-shaped dose response curves, confirming a typical biphasic hormetic response. The U-shaped dose response curves were displayed in malondialdehyde (MDA) and electrolyte leakage in leaves at low doses of Cd, indicating reduce oxidative stress and toxic effect. The increase of superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, indicative of increase in anti-oxidative capacity that ensures redox homeostasis is maintained. After 28 days exposure to 10 mg L(-1) Cd, stem and leaf Cd concentrations reached 502.96 ± 28.90 and 103.22 ± 5.62 mg kg(-1) DW, respectively and the plant had high bioaccumulation coefficient (BC) and translocation factor (TF'). Moreover, the maximum TF value was found at 2.5 mg L(-1) Cd treatment, implying that low Cd treatment improved the ability to transfer Cd from medium via roots to aerial structures. Taking together, L. japonica could be considered as a new plant to investigate the underlying mechanisms of hormesis and Cd tolerance. Our results suggest that hormetic effects should be taken into consideration in phytoremediation of Cd-contaminated soil |
---|---|
Beschreibung: | Date Completed 09.09.2013 Date Revised 21.10.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-013-1041-5 |