|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM224486284 |
003 |
DE-627 |
005 |
20231224063020.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plantsci.2012.11.009
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0748.xml
|
035 |
|
|
|a (DE-627)NLM224486284
|
035 |
|
|
|a (NLM)23352401
|
035 |
|
|
|a (PII)S0168-9452(12)00242-7
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Estrada, Beatriz
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 25.07.2013
|
500 |
|
|
|a Date Revised 11.03.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
|
520 |
|
|
|a High soil salinity is a serious problem for crop production because most of the cultivated plants are salt sensitive, which is also the case for the globally important crop plant maize. Salinity stress leads to secondary oxidative stress in plants and a correlation between antioxidant capacity and salt tolerance has been demonstrated in several plant species. The plant antioxidant capacity may be enhanced by arbuscular mycorrhizal fungi (AMF) and it has been proposed that AM symbiosis is more effective with native than with collection AMF species. Thus, we investigated whether native AMF isolated from a dry and saline environment can help maize plants to overcome salt stress better than AMF from a culture collection and whether protection against oxidative stress is involved in such an effect. Maize plants inoculated with three native AMF showed higher efficiency of photosystem II and stomatal conductance, which surely decreased photorespiration and ROS production. Indeed, the accumulation of hydrogen peroxide, the oxidative damage to lipids and the membrane electrolyte leakage in these AM plants were significantly lower than in non-mycorrhizal plants or in plants inoculated with the collection AMF. The activation of antioxidant enzymes such as superoxide dismutase or catalase also accounted for these effects
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Antioxidants
|2 NLM
|
650 |
|
7 |
|a Photosystem II Protein Complex
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a Reactive Oxygen Species
|2 NLM
|
650 |
|
7 |
|a Hydrogen Peroxide
|2 NLM
|
650 |
|
7 |
|a BBX060AN9V
|2 NLM
|
650 |
|
7 |
|a Catalase
|2 NLM
|
650 |
|
7 |
|a EC 1.11.1.6
|2 NLM
|
650 |
|
7 |
|a Superoxide Dismutase
|2 NLM
|
650 |
|
7 |
|a EC 1.15.1.1
|2 NLM
|
700 |
1 |
|
|a Aroca, Ricardo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Barea, José Miguel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ruiz-Lozano, Juan Manuel
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant science : an international journal of experimental plant biology
|d 1985
|g 201-202(2013) vom: 01. März, Seite 42-51
|w (DE-627)NLM098174193
|x 1873-2259
|7 nnns
|
773 |
1 |
8 |
|g volume:201-202
|g year:2013
|g day:01
|g month:03
|g pages:42-51
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plantsci.2012.11.009
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 201-202
|j 2013
|b 01
|c 03
|h 42-51
|