Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin river otters (Lontra canadensis)
River otters are fish-eating wildlife that bioaccumulate high levels of mercury (Hg). Mercury is a proven neurotoxicant to mammalian wildlife, but little is known about the underlying, sub-clinical effects. Here, the overall goal was to increase understanding of Hg's neurological risk to otters...
Publié dans: | Ecotoxicology (London, England). - 1992. - 22(2013), 3 vom: 28. Apr., Seite 469-75 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2013
|
Accès à la collection: | Ecotoxicology (London, England) |
Sujets: | Journal Article Research Support, Non-U.S. Gov't Biomarkers Water Pollutants, Chemical |
Résumé: | River otters are fish-eating wildlife that bioaccumulate high levels of mercury (Hg). Mercury is a proven neurotoxicant to mammalian wildlife, but little is known about the underlying, sub-clinical effects. Here, the overall goal was to increase understanding of Hg's neurological risk to otters. First, Hg values across several brain regions and tissues were characterized. Second, in three brain regions with known sensitivity to Hg (brainstem, cerebellum, and occipital cortex), potential associations among Hg levels and neurochemical biomarkers [N-methyl-D-aspartic acid (NMDA) and gamma-aminobutyric acid (GABAA) receptor] were explored. There were no significant differences in Hg levels across eight brain regions (rank order, highest to lowest: frontal cortex, cerebellum, temporal cortex, occipital cortex, parietal cortex, basal ganglia, brainstem, and thalamus), with mean values ranging from 0.7 to 1.3 ug/g dry weight. These brain levels were significantly lower than mean values in the muscle (2.1 ± 1.4 ug/g), liver (4.7 ± 4.3 ug/g), and fur (8.8 ± 4.8 ug/g). While a significant association was found between Hg and NMDA receptor levels in the brain stem (P = 0.028, rp = -0.293), no relationships were found in the cerebellum and occipital cortex. For the GABA receptor, no relationships were found. The lack of consistent Hg-associated neurochemical changes is likely due to low brain Hg levels in these river otters, which are amongst the lowest reported |
---|---|
Description: | Date Completed 09.09.2013 Date Revised 21.10.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-013-1040-6 |