Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities

Copyright © 2013 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 34(2013), 13 vom: 15. Mai, Seite 1083-93
1. Verfasser: Coe, Jeremy P (VerfasserIn)
Weitere Verfasser: Taylor, Daniel J, Paterson, Martin J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Nitric Oxide 31C4KY9ESH Carbon Monoxide 7U1EE4V452 Nitrogen N762921K75
LEADER 01000naa a22002652 4500
001 NLM224323563
003 DE-627
005 20231224062645.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23211  |2 doi 
028 5 2 |a pubmed24n0747.xml 
035 |a (DE-627)NLM224323563 
035 |a (NLM)23335248 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Coe, Jeremy P  |e verfasserin  |4 aut 
245 1 0 |a Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.07.2014 
500 |a Date Revised 09.04.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Wiley Periodicals, Inc. 
520 |a The method of Monte Carlo configuration interaction (MCCI) (Greer, J. Chem. Phys. 1995a, 103, 1821; Tong, Nolan, Cheng, and Greer, Comp. Phys. Comm. 2000, 142, 132) is applied to the calculation of multipole moments. We look at the ground and excited state dipole moments in carbon monoxide. We then consider the dipole of NO, the quadrupole of N2 and of BH. An octupole of methane is also calculated. We consider experimental geometries and also stretched bonds. We show that these nonvariational quantities may be found to relatively good accuracy when compared with full configuration interaction results, yet using only a small fraction of the full configuration interaction space. MCCI results in the aug-cc-pVDZ basis are seen to generally have reasonably good agreement with experiment. We also investigate the performance of MCCI when applied to ionisation energies and electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI results with full configuration interaction quantum Monte Carlo (Booth and Alavi, J. Chem. Phys. 2010, 132, 174104; Cleland, Booth, and Alavi, J. Chem. Phys. 2011, 134, 024112) and "exact" nonrelativistic results (Booth and Alavi, J. Chem. Phys. 2010, 132, 174104; Cleland, Booth, and Alavi, J. Chem. Phys. 2011, 134, 024112). We show that MCCI could be a useful alternative for the calculation of atomic ionisation energies however electron affinities appear much more challenging for MCCI. Due to the small magnitude of the electron affinities their percentage errors can be high, but with regards to absolute errors MCCI performs similarly for ionisation energies and electron affinities 
650 4 |a Journal Article 
650 7 |a Nitric Oxide  |2 NLM 
650 7 |a 31C4KY9ESH  |2 NLM 
650 7 |a Carbon Monoxide  |2 NLM 
650 7 |a 7U1EE4V452  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Taylor, Daniel J  |e verfasserin  |4 aut 
700 1 |a Paterson, Martin J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 34(2013), 13 vom: 15. Mai, Seite 1083-93  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:34  |g year:2013  |g number:13  |g day:15  |g month:05  |g pages:1083-93 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23211  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2013  |e 13  |b 15  |c 05  |h 1083-93