Interfacial tension dynamics, interfacial mechanics, and response to rapid dilution of bulk surfactant of a model oil-water-dispersant system

In the 2010 Deepwater Horizon rig explosion and subsequent oil spill, five million barrels of oil were released into the Gulf over the course of several months. Part of the resulting emergency response was the unprecedented use of nearly two million gallons of surfactant dispersant at both the sea s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 6 vom: 12. Feb., Seite 1857-67
1. Verfasser: Reichert, Matthew D (VerfasserIn)
Weitere Verfasser: Walker, Lynn M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In the 2010 Deepwater Horizon rig explosion and subsequent oil spill, five million barrels of oil were released into the Gulf over the course of several months. Part of the resulting emergency response was the unprecedented use of nearly two million gallons of surfactant dispersant at both the sea surface and well head, giving rise to previously untested conditions of high temperature gradients, high pressures, and flow conditions. To better understand the complex interfacial transport mechanisms that this dispersant poses, we develop a model surfactant-oil-aqueous system of Tween 80 (a primary component in the Corexit dispersant used in the Gulf), squalane, and both simulated seawater as well as deionized water. We measure surfactant adsorption dynamics to the oil-aqueous interface for a range of surfactant concentrations. Using techniques developed in our laboratory, we investigate the impact of convection, step changes in bulk concentration, and interfacial mechanics. We observe dynamic interfacial behavior that is consistent with a reorganization of surfactant at the interface. We demonstrate irreversible adsorption behavior of Tween 80 near a critical interfacial tension value, as well as measure the dilatational elasticity of equilibrium and irreversibly adsorbed layers of surfactant on the oil-aqueous interface. We report high values of the surface dilatational elasticity and surface dilatational viscosity, and discuss these results in terms of their impact regarding oil spill response measures
Beschreibung:Date Completed 29.07.2013
Date Revised 12.02.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la4000395