Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution
The dissociative adsorption and electrooxidation of CH(3)OH at a Pd electrode in alkaline solution are investigated by using in situ infrared spectroscopy with both internal and external reflection modes. The former (ATR-SEIRAS) has a higher sensitivity of detecting surface species, and the latter (...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 5 vom: 05. Feb., Seite 1709-16 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Solutions Sodium Hydroxide 55X04QC32I Palladium 5TWQ1V240M Methanol Y4S76JWI15 |
Zusammenfassung: | The dissociative adsorption and electrooxidation of CH(3)OH at a Pd electrode in alkaline solution are investigated by using in situ infrared spectroscopy with both internal and external reflection modes. The former (ATR-SEIRAS) has a higher sensitivity of detecting surface species, and the latter (IRAS) can easily detect dissolved species trapped in a thin-layer-structured electrolyte. Real-time ATR-SEIRAS measurement indicates that CH(3)OH dissociates to CO(ad) species at a Pd electrode accompanied by a "dip" at open circuit potential, whereas deuterium-replaced CH(3)OH doesn't, suggesting that the breaking of the C-H bond is the rate-limiting step for the dissociative adsorption of CH(3)OH. Potential-dependent ATR-SEIRAS and IRAS measurements indicate that CH(3)OH is electrooxidized to formate and/or (bi)carbonate, the relative concentrations of which depend on the potential applied. Specifically, at potentials negative of ca. -0.15 V (vs Ag/AgCl), formate is the predominant product and (bi)carbonate (or CO(2) in the thin-layer structure of IRAS) is more favorable at potentials from -0.15 to 0.10 V. Further oxidation of the CO(ad) intermediate species arising from CH(3)OH dissociation is involved in forming (bi)carbonate at potentials above -0.15 V. Although the partial transformation from interfacial formate to (bi)carbonate may be justified, no bridge-bonded formate species can be detected over the potential range under investigation |
---|---|
Beschreibung: | Date Completed 29.07.2013 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la305141q |