Amplification of conformational effects via tert-butyl groups : hexa-tert-butyl decacyclene on Cu(100) at room temperature
The design of molecular systems as functional elements for use in next-generation electronic sensors and devices often relies on the addition of functional groups acting as spacers to modify adsorbate-substrate interactions. Although advantageous in many regards, these spacer groups have the seconda...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 24 vom: 18. Juni, Seite 7309-17 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The design of molecular systems as functional elements for use in next-generation electronic sensors and devices often relies on the addition of functional groups acting as spacers to modify adsorbate-substrate interactions. Although advantageous in many regards, these spacer groups have the secondary effect of amplifying internal conformational effects of the parent molecule. Here we investigate one such molecule-2,5,8,11,14,17-hexa-tert-butyl-decacyclene (HBDC, C60H66)-deposited on Cu(100) at monolayer and submonolayer coverages using an ultra-high vacuum (UHV) scanning tunneling microscope (STM). By combining submolecular resolution imaging with computational methods, we describe a variety of properties related to the effects of adding tert-butyl spacers to a decacyclene core, including the molecular conformation, structure, and chiral separation of the molecular adlayer, strong intermolecular interactions, and a metastable pinned conformation of the molecule brought on by deformation under high-bias conditions that enable an examination of its diffusive 2D molecular gas at room temperature. Collectively, these observations provide direct insight into the effect of adding spacers to a flexible molecular core such as decacyclene as relates to both intermolecular and adsorbate-substrate interfaces |
---|---|
Beschreibung: | Date Completed 06.01.2014 Date Revised 18.06.2013 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la304634n |