Image quality assessment using multi-method fusion

A new methodology for objective image quality assessment (IQA) with multi-method fusion (MMF) is presented in this paper. The research is motivated by the observation that there is no single method that can give the best performance in all situations. To achieve MMF, we adopt a regression approach....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 5 vom: 07. Mai, Seite 1793-807
1. Verfasser: Liu, Tsung-Jung (VerfasserIn)
Weitere Verfasser: Lin, Weisi, Kuo, C-C Jay
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM223900532
003 DE-627
005 20231224061736.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2236343  |2 doi 
028 5 2 |a pubmed24n0746.xml 
035 |a (DE-627)NLM223900532 
035 |a (NLM)23288335 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Tsung-Jung  |e verfasserin  |4 aut 
245 1 0 |a Image quality assessment using multi-method fusion 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2013 
500 |a Date Revised 20.03.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A new methodology for objective image quality assessment (IQA) with multi-method fusion (MMF) is presented in this paper. The research is motivated by the observation that there is no single method that can give the best performance in all situations. To achieve MMF, we adopt a regression approach. The new MMF score is set to be the nonlinear combination of scores from multiple methods with suitable weights obtained by a training process. In order to improve the regression results further, we divide distorted images into three to five groups based on the distortion types and perform regression within each group, which is called "context-dependent MMF" (CD-MMF). One task in CD-MMF is to determine the context automatically, which is achieved by a machine learning approach. To further reduce the complexity of MMF, we perform algorithms to select a small subset from the candidate method set. The result is very good even if only three quality assessment methods are included in the fusion process. The proposed MMF method using support vector regression is shown to outperform a large number of existing IQA methods by a significant margin when being tested in six representative databases 
650 4 |a Journal Article 
700 1 |a Lin, Weisi  |e verfasserin  |4 aut 
700 1 |a Kuo, C-C Jay  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 5 vom: 07. Mai, Seite 1793-807  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:5  |g day:07  |g month:05  |g pages:1793-807 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2236343  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 5  |b 07  |c 05  |h 1793-807